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Previous research suggests detrimental health effects associated with
consuming processed foods, including processed meats, sugar-sweetened
beverages (SSBs) and trans fatty acids (TFAs). However, systematic
characterization of the dose-response relationships between these foods
and health outcomesis limited. Here, using Burden of Proof meta-regression
methods, we evaluated the associations between processed meat, SSBs and
TFAs and three chronic diseases: type 2 diabetes, ischemic heart disease (IHD)
and colorectal cancer. We conservatively estimated that—relative to zero
consumption—consuming processed meat (at 0.6-57 g d*) was associated
with atleast an11% average increase in type 2 diabetes riskand a 7% (at
0.78-55g d™) increase in colorectal cancer risk. SSB intake (at 1.5-390 g d ™)
was associated with at least an 8% average increase in type 2 diabetes risk and
a2% (at 0-365gd™) increase in IHD risk. TFA consumption (at 0.25-2.56%

of daily energy intake) was associated with at least a 3% average increase in
IHD risk. These associations each received two-star ratings reflecting weak
relationships or inconsistent input evidence, highlighting both the need for
further research and—given the high burden of these chronic diseases—the
merit of continuing to recommend limiting consumption of these foods.

Ultra-processed foods highin calories, sugars, unhealthy fats and salt
have been linked to a variety of adverse health outcomes'* Processed
meat, sugar-sweetened beverages (SSBs) and trans fatty acids (TFAs) are
widely consumed ultra-processed foods that are consistently associ-
ated with increased chronic disease risk®*. The Global Burden of Dis-
eases, Injuries, and Risk Factors Study (GBD) 2021 estimated that diets
highin processed meat contributed to nearly 300,000 deaths globally
in2021and over 10 million disability-adjusted life years (DALYs, which

combine years of life lost and years lived with disability); diets high
in SSBs and TFAs were estimated to contribute to approximately 3.6
million and 2.5 million DALYs, respectively’.

Processed meats, preserved by smoking, curing, salting or the
addition of chemical preservatives, can contain harmful compounds,
such as N-nitroso compounds®, polycyclic aromatic hydrocarbons
(PAHs)’ and heterocyclic amines®. High consumption of processed
meats has been linked to chronic diseases such as heart disease, type
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2 diabetes and colorectal cancer. It is hypothesized that this is due to
anincreased visceral fatindex’, inflammation'?and the potential for
factorssuch as N-nitroso compounds, PAHs and heterocyclicamines to
induce tumors™™'®, SSBs encompass awide range of beveragesincluding
sodas, fruit drinks, sports drinks, energy drinks, and sweetened teas
and coffees, and they compose the primary source of added sugars in
many people’sdiets”. High consumption of added sugars, particularly
in liquid form, is associated with weight gain and increased risk of
obesity, type 2 diabetes and ischemic heart disease (IHD)'. SSB con-
sumption has risen globally during the past three decades, with the
steepest increases in low- and middle-income countries”. TFAs are a
type of unsaturated fat occurring naturally in small amounts in some
meat and dairy products, but are also produced artificially to convert
vegetable oil fromaliquid to asolid via hydrogenation. Artificial TFAs,
inexpensive and shelf-stable fats used in many processed foods and
baked goods®, have been associated with increased risk of systemic
inflammation? and cardiovascular diseases? .

Because processed meat, SSBs and TFAs are widely available and
their consumptionis commonplace, itisimportanttorigorously char-
acterize the dose-response relationships between intake of these
foodsandtherisk of prevalent chronic diseases, and to systematically
evaluate the strength and consistency of evidence supporting these
associations. Here we performed updated systematic reviews and
meta-analyses using Burden of Proof methods to characterize relation-
ships for dietary risk factors—specifically processed foods—and related
health outcomes. Our present analysis examines the associations
between processed meat consumption and three health outcomes
(type 2 diabetes, IHD and colorectal cancer), between SSB intake and
two outcomes (type 2 diabetes and IHD) and between TFA consump-
tion and one outcome (IHD). These risk-outcome pairs were selected
based ontheirinclusion—initially predicated on World Cancer Research
Fund grades of convincing or probable evidence—in GBD 2021[5]. To
accurately andreliably capture disease risk across the fullintake range
observed in input studies, we used Burden of Proof meta-regression
methods® designed to (1) flexibly model risk-outcome associations
that may notbelinearly related across the entire relative risk function
and (2) conservatively estimate relationships, accounting for consist-
ency andinconsistency across input study findings. Results and policy
implications of this study are summarized in Table 1.

Results

Overview

In this study, we conducted systematic reviews and meta-analyses to
evaluate the dose-response associations between processed meat con-
sumption and three chronic disease outcomes (type 2 diabetes, IHD
and colorectal cancer); between SSB consumption and type 2 diabetes
and IHD; and between TFA consumption and IHD based on Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines®. The PRISMA workflow diagrams for processed meat are
described in Extended Data Figs. 1-3. The PRISMA flow diagrams for
the SSB and TFA systematic reviews are described in Extended Data
Figs. 4-6. Further details on our search strategy and inclusionary and
exclusionary criteriaare detailed in Methods, Supplementary Sections
1-3 and Supplementary Tables 1-4. The characteristics of the studies
included in these systematic reviews are presented in Supplementary
Table 5. The definitions of bias covariates (Supplementary Table 6) and
the bias covariate scores of each study are reported in Supplementary
Tables 7-9.Most of the studies adjusted their effect size for age, sex, body
mass index (BMI) and energy intake (Supplementary Tables 8 and 9).

Processed meat consumption and type 2 diabetes

Our analysis of processed meat consumption and type 2 diabetes
included 96 observations from15 prospective cohort studies” *'and
one nested case-control study*’, whichincluded a total of 1,115,885 par-
ticipantsand 64,607type2diabetesevents. Thefollow-up periodranged

Table 1| Policy summary

Previous research has indicated adverse effects of
processed meat, SSB and TFA consumption on chronic
disease outcomes. However, confidence in these
findings has been limited by heterogeneous findings
across research studies. In this meta-regression, we
examined the relationships between processed meat
and risk of type 2 diabetes, IHD and colorectal cancer;
between SSBs and type 2 diabetes and IHD; and
between TFAs and IHD. Using Burden of Proof methods
that flexibly model nonlinear relationships and quantify
and incorporate between-study heterogeneity, we
generated measures that capture the strength of the
input evidence and provide conservative estimates of
association to more accurately and reliably identify
adverse risk-outcome relationships.

Background

On the basis of our conservative interpretation of
available data, we found that consuming processed
meat at levels between the 15th and 85th percentiles
of exposure observed in the data analyzed was
associated, on average, with at least an 11% increased
risk (at consumption levels between 0.6gd™ and
57gd™) of type 2 diabetes and 7% increased risk
(0.78-55gd™) of colorectal cancer. SSB consumption
was associated with at least 8% (1.5-390gd™) and 2%
(0-365gd™) average increases in risk of type 2 diabetes
and IHD, respectively. TFA consumption at 0.25-2.56%
of daily energy intake was associated with at least a

3% average increase in IHD risk. In the Burden of Proof
framework, these associations are rated as relatively
weak two-star relationships, reflecting small effect
sizes and/or lack of consistent evidence. We found a
weaker one-star association between processed meat
and IHD that did not support calculating percentage
change in IHD risk; this finding may change with the
addition of new evidence. Importantly, we observed,
for all risk-outcome pairs analyzed, a monotonic
increase in risk of the specified disease outcomes at

all levels of consumption, with the steepest increases
in risk occurring at exposure levels approximately
equivalent to one serving or less for each dietary risk
factor. The primary limitations of our meta-analysis
were based on observational studies, which are prone
to residual confounding, and the fact that the dominant
exposure assessment method—the FFQ—is susceptible
to measurement errors.

Main findings and
limitations

Policy implications  This study found evidence—under a conservative
interpretation of the available data—to justify

robust efforts and policies to promote the reduced
consumption of processed meat, SSBs and TFAs,
particularly industrially produced TFAs, to reduce

the risk of chronic diseases. Our finding supports

the recent initiative of the WHO to ban industrially
produced trans fats and their call to tax SSBs to
reduce diet-related noncommunicable diseases. Our
observation that the greatest increases in disease

risk occurred at low intake levels suggests that even
lower levels of habitual consumption of these dietary
risk factors are not safe. Policies promoting access to
and affordability of healthier food options could help
mitigate the risks associated with the consumption of
processed meats, SSBs and TFAs. Therefore, efforts
must be intensified to increase public awareness and
policy action to reduce the consumption of these
dietary risk factors and promotion of healthier food
options. Future meta-analysis studies should prioritize
examining the relationship between processed meat
consumption and IHD, as the existing evidence, when
interpreted conservatively, is weak.

from 4.6 years to 40 years. Most of the studies (n =12)2053738:40-42
used type 2 diabetesincidence as the endpoint to estimate effect sizes,
while four studies”?**** considered both diabetes incidence and mor-
tality as endpoints. Six studies?****** determined outcomes using
administrative medical records, disease registries or death certificates;
five studies used self-reported incidence®******42- three cohort studies

used biomarkers?*?*?2; and two cohorts used physician diagnosis®*.
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Fig. 1| Relative risk of processed meat consumption on type 2 diabetes, IHD
and colorectal cancer. a-c, The log(RR) function, the RR function and a modified
funnel plot showing the residuals (relative to 0) on the x axis and the estimated

standard error thatincludes the reported standard error and between-study
heterogeneity on the y axis, for type 2 diabetes (a), IHD (b) and colorectal cancer
(c). Ul, uncertainty interval.

Allstudies adjusted their effect size measure for age and sex. All studies
exceptone adjusted for smoking. Other common adjustment variables
included energy intake (n = 13)?%3073%373840°%2 g]cohol consumption
(n= 12)27—30,32,33,36—38,40—42 and BMI (n=14) 27-30,32-36,38-42_

We observed a statistically significant, nonlinear, monotonic
increaseintype 2 diabetes risk associated with higher processed meat
consumption; that is, disease risk increased with increased intake
at all intake levels but, for a given unit increase in consumption risk,
increased most steeply at lower intake levels (Fig. 1a). The mean
relative risk (RR) of developing type 2 diabetes was 1.30 (1.12-1.52)
at a daily intake of 50 g of processed meat compared with the theo-
retical minimum risk exposure level (TMREL; equal here to 0 gd™ or
no consumption).

Asacomplement tothe main RR function, we generated a conserv-
atively derived Burden of Proof risk function (BPRF), which, averaged
across the central part of the exposure range, yielded an estimate of
1.11, indicating that consuming processed meat in the range of the 15th
to 85th percentiles of exposure (0.6-57 g d™*), compared with consum-
ing no processed meat, was associated on average with at least an 11%
higher risk of type 2 diabetes. This BPRF equated to a risk-outcome
score (that is, the signed value of the average log(BPRF)) of 0.10, cor-
responding to atwo-star rating within the Burden of Proof framework.
We observed asymmetry in the funnel plot (Fig. 1a), and the result of

Egger’s regression suggested statistically significant evidence of publi-
cationorreportingbias (Egger’s regression Pvalue = 0.0001) (Table 2).
We found that trimming had a substantial effect on the risk-outcome
score: without trimming, the risk-outcome score increased to 0.14
suggesting that the conservatively estimated association between
processed consumption and type 2 diabetes is relatively sensitive to
outliers (Extended Data Fig. 7a and Supplementary Table 17).

Processed meat consumptionand IHD

In the processed meat consumption and IHD systematic review, we
included 11 prospective cohort studies®**~? representing a total of
1,173,821 participants and 31,549 IHD events. The median (range)
follow-up period was 14 years (8-30 years). Most of the studies used
incidence and mortality as the endpoints**** %% based onadministra-
tive medical records, disease registries or death certificates®®*> 645752,
All of the studies adjusted their effect size measure for age and sex.
Most of the studies adjusted for physical activity (n = 9)*¢*34446-51,
BMI (n = 9)*¢43-464851 smoking (n =10)*****+4"52 and energy intake
(n= 8)43,44,46751.

We observed a weak, nonlinear, monotonic increase in IHD risk
associated with processed meat consumption when accounting for
between-study heterogeneity (Fig. 1b). We estimated the RR to be 1.15
(0.97-1.36) at 50 g d* consumption of processed meat compared with
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Table 2 | Strength of the evidence for the relationship between processed meat, SSB and TFA consumption and health

outcomes

Risk-outcome pair 85th percentile Unit of exposure RR (95% UI RR (95% UI BPRF  Risk-outcome Star Publication Number of
exposure level withy) without y) score rating bias studies

Processed meat- 56.81 gd” 1.32(1.12,1.55) 1.32(1.24,1.4) 1% 0.1 Yok Yes 16
type 2 diabetes
Processed meat- 54.88 gd” 1.28 (1.09, 1.5) 1.28 (119, 1.38) 7% 0.07 ¥ No 18
colorectal cancer
Processed 30.16 gd” 112(0.98,1.28) 113(1.06,1.18) NA -0.001 * No n
meat-IHD
SSB-type 2 390 gd”’ 1.24(1.09,1.41)  1.24(119,1.29) 8% 0.07 Yok No 19
diabetes
SSB-IHD 365 gd? 112 (1.04,1.2) 112 (1.08,1.15) 2% 0.02 Yo No 8
Trans fat-IHD 2.56 Percentage of 1.24(1.01,1.52)  1.24(115,1.33) 3% 0.03 ¥ No 6

daily energy intake

The reported RR and its 95% Ul reflect the risk an individual who has been exposed to the dietary risk factor of interest (that is, processed meat, SSB and TFA consumption) has of developing
the outcome of interest relative to that of someone who has not been exposed. We report the 95% Ul when not incorporating between-study heterogeneity (y)—'95% Ul without y'—and when
accounting for between-study heterogeneity—'95% Ul with y’. The BPRF is calculated for risk-outcome pairs that were found to have significant relationships at the 0.05 level of significance
when not incorporating between-study heterogeneity (that is, the lower bound of the 95% Ul without y does not cross the null RR value of 1). The BPRF corresponds to the 5th quantile
estimate of relative risk accounting for between-study heterogeneity closest to the null for each risk-outcome pair, and it reflects the most conservative estimate of excess risk associated
with dietary risk factors of interest that is consistent with the available data. Negative risk-outcome scores indicate that the evidence of the association is very weak and inconsistent. For ease
of interpretation, we have transformed the risk-outcome scores and BPRF into a star rating (0-5) with a higher rating representing a larger effect with stronger evidence. The selected bias
covariates were chosen for inclusion in the model using an algorithm that systematically detects bias covariates that correspond to significant sources of bias in the observations included.

If selected, the observations were adjusted to better reflect the gold standard values of the covariate. For more information about the definition of candidate bias covariates, see
Supplementary Table 6, and for the bias covariates selected for each model, refer to Supplementary Table 12. NA, not available.

no consumption (Fig.1b and Supplementary Table 14). Our conserva-
tive analysis yielded a risk-outcome score of -0.001, corresponding
toaone-starrating, indicating aweak association after accounting for
between-study heterogeneity. We did not find significant evidence of
publication or reporting bias, and visual inspection of the funnel plot
provided no evidence of substantial bias. The risk-outcome score calcu-
lated without trimming was consistent with the model using trimming
(risk-outcome score =—0.01), which indicates that the modelisinsensi-
tive to outliers (Extended Data Fig. 7b and Supplementary Table 17).

Processed meat consumption and colorectal cancer

Inthe meta-analysis that examined the association between processed
meat consumptionand colorectal cancer, weincluded 18 prospective
cohort studies®*”° with a total of 2,678,052 participants and 30,259
colorectal cancer events. The median (range) of follow-up was 9 years
(5-27 years). Most of the studies (n = 15)°38607636566.68-70 yged inci-
dence of colorectal cancer as an endpoint, and the remaining three
studies used both incidence and mortality. Most of the studies
(n =14)%35456758,60-63,65-676970 ysed administrative medical records or
disease registries to determine the occurrence of colorectal cancer.
All studies adjusted their effect size measures for age and sex. Most
of the studies adjusted for BMI (n = 14)333556583961-66.68-70 'smoking
(n - 14)53,55,56,58*62,64,66*70’ education (n = 11)53,55,56,58*60,63,65,66,69,70' energy
intake (n =15)>*"*"%"% physicalactivity (n = 13)*>*°°"**%*9and alcohol
inta ke (n - 14)53,55,58764,66770‘

We observed a statistically significant nonlinear monotonic
increase in colorectal cancer risk associated with higher processed
meat consumption (Fig. 1c). The mean RR of developing colorectal
cancer risk was 1.26 (1.08-1.47) at a daily intake of 50 g of processed
meat compared with the TMREL (that is, no consumption). We esti-
mated the exposure-averaged BPRF to be 1.07, indicating that con-
suming processed meat in the range of the 15th to 85th percentiles
of exposure (0.78-55 g)—compared with consuming no processed
meat—was associated with at least a 7% higher risk, on average, of
colorectal cancer. Therisk-outcome score (0.07) equates to atwo-star
rating, indicating a weak association between processed meat and
colorectal cancer when accounting for between-study heterogeneity.
We did not find significant evidence of publication bias. We found that
using untrimmed data impacted between-study heterogeneity and

notably influenced the risk-outcome score (0.02) but did not change
the star rating of the strength of the evidence (Extended Data Fig. 7¢
and Supplementary Table 17).

SSB consumption and type 2 diabetes

Our analysis of SSB consumption and type 2 diabetes included 92
observations from 18 prospective cohort studies” * and one nested
case—control study®, representing a total of 563,444 participants and
39,505 type 2 diabetes events. All studies used type 2 diabetes inci-
dence as the endpoint to estimate effect sizes. A total of 14 studies
used self-reported incidence”’>7779-8+8789. 3 studies’>”® used adminis-
trative medical records, disease registries or death certificates; and 1
study® used physician diagnosis to determine the outcome. All studies
adjusted their effect size measure for age, sex, BMl and physical activ-
ity. All studies” %%’ except one adjusted for smoking. Other common
adjustment variables included energy intake (n =14)7' 7678 8084-8789,
alcohol consumption (n = 14)717377577798082°8789 " adycation level
(n= 14)71—74,76,77,79—84,87,89 and hypertension (n= 8)10,71,73—75,83—85.

We observed a statistically significant, nonlinear, monotonic
increase in type 2 diabetes risk associated with higher SSB consump-
tion (Fig. 2a). The mean RR of type 2 diabetes at aconsumption level of
250 g d (-8 0z) was1.20 (1.07-1.34) compared with the TMREL (0 g d ™)
(Supplementary Table 15).

We estimated the exposure-averaged BPRF to be 1.08, indicating
that consuming SSB in the range of the 15th to 85th percentiles of
exposure (1.5-390 g d ') was associated, on average, with at least an
8% higherrisk of type 2 diabetes. This BPRF equated to arisk-outcome
score of 0.07, corresponding to a two-star rating (Table 2). We did not
observe statistically significant evidence of publication or reporting
bias (Egger’s regression P value = 0.25) (Fig. 2a). We found that trim-
ming had a minimal impact on the risk-outcome score, and without
trimming, the risk-outcome score was 0.07 (Extended Data Fig. 8a
and Supplementary Table 17).

SSB consumptionand IHD

Our analysis of SSB consumption and IHD included 27 observations
from 8 studies’*"”, representing a total of 961,176 participants and
24,542 IHD events. Three studies estimated effect size using IHD
mortality®>**® as the endpoint, and six studies evaluated both IHD
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Fig. 2| Relative risk of SSBs on type 2 diabetes and IHD. a,b, The log(RR) function, the RR function and a modified funnel plot showing the residuals (relative to 0) on
the xaxis and the estimated standard error that includes the reported standard error and between-study heterogeneity on the y axis, for type 2 diabetes (a) and IHD (b).

incidence and mortality as endpoints’®*>?**”, All studies determined
outcomes using administrative medical records, disease registries or
death certificates’ . All studies adjusted their effect size measure for
age, sex, smoking, physical activity, BMI and alcohol intake.

We observed a statistically significant, nonlinear, monotonic
increase in IHD risk associated with higher SSB consumption (Fig. 2b).
Compared with no consumption, the mean RR of IHD at a consump-
tion level of 250 g d™ (-8 0z) was 1.07 (1.03-1.12). We estimated the
exposure-averaged BPRF tobe 1.03, indicating that consuming SSBin
therange of the 15th to 85th percentiles of exposure (0-365 g d™) was
associated, on average, with at least a 2% higher risk of IHD. The BPRF
equatedto arisk-outcomescore of 0.02, corresponding to a two-star
rating. Egger’sregression did not show statistically significant evidence
of publication or reporting bias (Egger’s regression P value = 0.36)
(Table 2 and Fig. 2b). We found that trimming had no effect on the risk-
outcome score (Extended Data Fig. 8b and Supplementary Table 17).

TFA consumption and IHD

We identified six prospective cohort studies to evaluate the relation-
ship between TFA consumption®® %> and IHD, representing 226,509
individuals and 12,548 IHD events. The median follow-up was 24 years
(range, 6-30 years). All studies determined outcomes using adminis-
trative medical records or disease registries. In all studies, the effect
size measures were adjusted for sex, BMI, energy intake and smoking.
All studies adjusted the effect size for age except one’®'°°7>, Most
of the studies adjusted their effect size for alcohol intake®'°*. Four
of the six studies adjusted their effect size for education’®?>1°"1°2 or
hypertension®”?"'%, Three studies adjusted their effect size measures
for physical activity?*'°"1%2,

We observed a nonlinear, monotonic increase in risk of IHD with
increasing consumption of TFAs (Fig. 3). The mean RR of IHD at 1% of
daily energy intake from TFA compared with no TFA intake was 1.11
(1.00-1.24). Consumption of TFAs at higher levels (2% of daily energy
intake) was associated with a1.20 (1.00-1.44) increased risk of IHD.
We observed considerable between-study heterogeneity (Fig. 3 and
Supplementary Table 16).

When between-study heterogeneity was accounted for, our con-
servative interpretation of the evidence suggested that consuming TFA
intherange of the 15th to 85th percentiles of exposure (0.25-2.56% of
daily energy intake) increases the risk of IHD, on average, by at least
3%. This corresponded to arisk-outcome score of 0.03 (Table 2). This
risk-outcome score equates to a two-star rating, indicating the asso-
ciationbetween TFA and IHD is weak but significant when accounting
for between-study heterogeneity. There was no statistically signifi-
cant evidence of publication or reporting bias (Egger’s regression
Pvalue = 0.44). We found that trimming had a substantial effect on
the risk-outcome score; without trimming, the risk-outcome score
decreasedto-0.12, which equates to a one-star rating, suggesting that
the risk-outcome score for TFA consumption and IHD is sensitive to
outliers (Extended Data Fig. 9).

Discussion

This meta-analysis evaluated the dose-response relationships between
processed meat consumption and three chronic disease outcomes—
type 2 diabetes, IHD and colorectal cancer; between SSB intake and
type 2 diabetes and IHD; and between TFA consumption and IHD. For
allsix risk-outcome pairs assessed, even our intentionally conservative
BPRF summary measures showed that a higher intake of the processed
food under evaluation was associated with significantly increased risk
of the specified health outcome. Higher consumption of processed
meats was associated with increased risk of type 2 diabetes, colorectal
cancer and IHD; a higher intake of SSBs was associated with increased
type 2 diabetes and IHD risk; and increased consumption of TFAs was
associated withincreased IHD risk. Except for the associationbetween
processed meat consumption and IHD—whichreceived aone-star rat-
ing suggesting a weaker association and/or less consistent evidence
base—all of the risk-outcome relationships received two-star ratings,
also defined as weak within the Burden of Proof framework. However,
these low star ratings serve toindicate the need for further research to
resolveinconsistencies acrossinput study findings and clarify the level
of healththreat posed by increased consumption of the processed food
in question. Moreover, the policy relevance of arisk factor must depend
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both on the magnitude of the association and strength of underlying
evidence along with the prevalence of the risk factor and associated
disease outcomes.

Because Burden of Proof meta-regression methods allowed us to
capture the shape of the risk-outcome association from the datarather
thanenforcing previous assumptions such as log-linearity, our findings
more accurately reflect the dose-response relationship at specific lev-
els of consumption than do results from traditional meta-analyses. For
allsix of the RR curves generated by our analysis, health riskincreased
monotonically; thatis, across the full range of exposure, risk increased
as consumption increased. Notably, however, the steepest slopes of
therisk curves occurred at exposure levels approximately equivalent
tooneservingorless for each of the dietaryrisk factors. Thisindicates
that the healthrisks associated with consuming processed meats, SSBs
and TFAsincreased the fastest at low levels of consumption, thatis, one
serving size a day. This information provides critical data for public
health specialists and policymakers responsible for dietary guidelines
and potential initiatives that aim to reduce the consumption of these
processed foods.

With respect to specific risk-outcome pairs, our analyses yielded
two-star ratings for the association of processed meat consumption
with type 2 diabetes and with colorectal cancer, and—even based on our
conservatively derived summary estimates—showed that consump-
tionat commonly observed levels (compared with zero consumption)
was associated with at least an11% average increase in type 2 diabetes
risk and 7% average increase in colorectal cancer risk. Our RR curves
showed that regularly consuming 50 g d ' of processed meat, roughly
equivalentto eating astandard-sized hotdog, was associated witha30%
increaseintype 2 diabetesriskanda26%increase in colorectal cancer
risk. The monotonicincreases in health risk with increased consump-
tion of processed meat suggest that there is not a ‘safe’amount of pro-
cessed meat consumption withrespect to diabetes or colorectal cancer
risk. Our findings are consistent with the World Health Organization
(WHO) designation of processed meat as carcinogenic to humans'**
and designations by the World Cancer Research Fund and the American
Institute for Cancer Research of processed meat consumption as arisk
factor for colon cancer. The majority of the existing dietary guidelines
provide qualitative recommendations to limit or avoid the consump-
tion of processed meat without specifying intake levels, although a
few do provide quantitative recommendations. On the basis of our
findings, dietary guidelines should note the potential health risks of
consuming even small amounts of processed meat.

Regarding the relationship between processed meatand IHD, our
conservativeinterpretationindicates that the evidence for an associa-
tionisweak, yielding aone-star rating owing to a negative risk-outcome
score value. One-star ratings reflect risk-outcome relationships that
are statistically significant using conventional analytic methods but
do not achieve significance based on conservative BPRF methods

incorporating between-study heterogeneity. For all of our analyses of
processed meat consumption, we found considerable heterogeneity
among input study findings, which contributed to low star ratings
reflecting a combination of low effect size and/or inconsistent input
evidence. This heterogeneity probably resulted from variations in
input study characteristics that we were unable to fully account for
with our covariate selection and adjustment methods, in addition to
the impact of potential effect modifiers such as genetic factors'” and
confounders. Further research is needed to untangle confounding
effects and ultimately coalesce on amore consistent body of evidence.

With respect to SSBs, they are an important source of added
sugarsin the diet, with consumption increasing globally>". Our con-
servative interpretation of the available evidence, based on BPRF
metrics, showed that commonly observed SSB consumption levels
were associated with at least an 8% average increase in type 2 diabetes
riskand atleasta2%increasein IHD risk, equating to two-star ratings.
As with processed meat consumption, the RR curves we derived
showed monotonic increases in type 2 diabetes and IHD risk with
increased SSB consumption; that is, across the entire intake range,
any increase in SSB consumption was associated with increased dis-
easerisk, with the steepestincreasesinrisk observed atintake levels
below 250 g d?, roughly equivalent to 9 oz of soda or three-fourths
of atypical soda drink. Our findings support the need for initiatives
toavoid and reduce the consumption of SSBs'°*'”, The WHO recom-
mends limiting the intake of added sugar, including SSBs, to 10% of
total caloric intake and a further reduction below 5% total caloric
intake for additional health benefits'’®. The Dietary Guidelines for
Americans recommend limiting the intake of added sugar, including
SSBs, to below 10% (ref.109).

Therelatively low two-star ratings for the disease outcomes tested
inassociation with SSB intake were probably due in large part to high
between-study heterogeneity, potentially resulting from variable
health effects of particular SSBs depending on the amount of sugar
content. Our SSB-type 2 diabetes model did test and include as a bias
covariate whether input studies provided a clear definition of SSB (that
is, whether sugar was explicitly mentioned as a sweetener). However,
this covariate could not be used as a proxy measure for the sugar con-
tent of SSBs, meaning it could not fully account for the heterogeneity
associated with variation in the sugar content of SSBs. It is also note-
worthy that all the SSB studies included in our analysis adjusted their
effect size measures for BMI and for physical activity, and the majority
accounted for energy intake. These adjustments reduced the likelihood
that our estimates of increased type 2 diabetes and IHD risk associated
with SSB consumption were mediated through effects of SSBs on BMI,
energy intake or physical activity.

On the basis of our meta-analysis examining the relationship
between TFAs and IHD, our conservative BPRF estimate showed that
commonly observed TFA consumption primarily from industrially
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produced trans fat sources (0.24-2.5% of daily energy intake) was
associated withatleasta3% averageincreased risk of IHD, equating to
a two-star association. The RR curve indicated a monotonic increase
in IHD risk associated with increased TFA consumption, with no safe
level of exposure observed for industrially produced trans fats. The
relatively low star ratingis again duein large part to high between-study
heterogeneity, probably resulting from residual confounding and
measurementerror. Intheinput studiesincluded in our meta-analysis,
only asingle study adjusted its effect size measurement for saturated
fatintake, and none adjusted for other potential diet-related confound-
ers including sodium, SSB and processed meat intake. Our findings
support the need for initiatives such as the best practice policies rec-
ommended by the WHO that aim to eliminate industrially produced
TFAs from the food supply"°. One policy is to establish mandatory
national limits of 2 g of industrial trans fat per 100 g of total fat in all
foods. The WHO additionally recommends instituting mandatory
bans onthe production and/or use of partially hydrogenated oil as an
ingredientinallfoods. The ‘REPLACE’ action package, developed by the
WHO, supportsthe design and implementation of policies to eliminate
industrially produced TFAs from the food supply.

Allobservational nutritional cohort analyses based on self-report
and recall to quantify intake levels are subject to measurement error
and residual confounding™ ™, The present risk-outcome analyses
are likewise susceptible to such errors; to the extent we were unable
toaccount for them, they were likely primary contributors to the high
between-study heterogeneity that resulted in the relatively low star
ratings. To account for confounding, Burden of Proof methods sys-
tematically test and adjust for bias covariates that might influence
the estimated risk-outcome relationship. Animportant bias covariate
that we tested for was whether input studies adjusted their effect size
forenergyintake, awell-known approachin nutritional epidemiology
studies*'*. Most of the studies included in our analyses made this
adjustment, and it therefore was not identified by our algorithm as a
significantbias covariatein our models. Inadditionto energy intake, we
alsoaccounted for whether studies adjusted for other dietary factors
(for example, consumption of fruits and vegetables, unprocessed meat
and alcohol) that could potentially confound the association between
the dietary risk factors under investigation here and each outcome
of interest. Relatively few input studies adjusted their effect size for
these dietary factors, except for alcohol intake. Importantly, our bias
covariate selection and adjustment methods were not able to eliminate
all residual confounding and did not address the measurement error
intrinsicin dietary assessment tools™"">",

Although the primarily two-star (and one one-star) ratings
we obtained for the risk-outcome associations evaluated in this
study are considered relatively weak, this is in large part due to high
between-study heterogeneity leading to wide uncertainty intervals,
as estimated in the Burden of Proof framework, and the balance of
evidence still points to adverse health outcomes associated with
these foods. Policymakers should continue advocating for measures
that reduce intake of processed meat, SSBs and TFAs as these food
items are consumed widely and are associated with diseases that are
highly prevalent'.In addition, nutritional epidemiology studies must
incorporate advancesin technology and new analytical techniques to
address existing methodological challenges. For example, nutritional
epidemiology studies can benefit considerably from recent develop-
ments in artificial intelligence and ‘omics’ technologies. Artificial
intelligence-assisted dietary assessment has substantially reduced
measurement error associated with dietary recall*'*°, a major chal-
lenge in nutritional epidemiology studies. The use of Mendelian rand-
omizationtechniques, which use study participants’ genetic profilesto
predict theirintake levels rather thanrelying on self-report and recall,
show promise as away to reduce the effects of residual confoundingin
analyses estimating associations between dietary intake factors and
health outcomes'*?,

Theresults of our meta-analysis are subject to anumber of limita-
tions. In our analysis, we investigated a small set of health outcomes
foreachdietary risk factor—limited to the relevant risk-outcome pairs
included in GBD 2021-which did not encompass all possible health
outcomes associated with these risk factors. Expanding the pool of
potential health outcomes associated with these dietary risks could
allow for amore complete accounting of the evidence and associated
burdeninthe future.Inaddition, we focused onthree dietary risk fac-
torsthatare components of ultra-processed foods, but we did not inves-
tigate the health effects of other potentially harmful ultra-processed
foods such as sweetened breakfast cereals and processed cheese prod-
ucts. Weincluded prospective cohort and case-cohort studies, which
inherently introduce residual confounding that our methods cannot
completely eliminate. As noted previously, a considerable number of
the studies included in this meta-analysis did not account for dietary
confounding factors beyond energy intake. In addition, the primary
exposure assessment tool in almost all studies included was the food
frequency questionnaire (FFQ). The FFQ canintroduce measurement
errors arising primarily fromdifficulties experienced by respondents
recallinglong-termintake, along withinstrument-specific limitations
such asthefiniteinventory of foods listed and lack of detailed informa-
tion about the foods. Several of the studies included assessed dietary
exposure only at baseline, which might not accurately reflect future
dietary habits. Furthermore, even thoughinvestigations of diet-gene
interactions are becoming more common, we could notinclude genetic
predisposition as abias covariate in our analysis owing to the absence
of geneticinformationinthe studiesincluded. When studies reported
effect sizes for total TFA consumption without stratifying by TFA source
(ruminant versus industrial), we elected to assume that the majority
of the TFA was industrially produced. The risk model we use is based
on effect sizes derived from incidence and/or mortality data, and we
were unable to run separate models for incidence and mortality owing
to data scarcity, except in the case of SSB-type 2 diabetes. Finally,
although many of the studiesincluded reported serving sizesingrams,
some did not define serving size. In these cases, we applied a constant
conversion factor to translate serving size into grams, which might
notbe consistent with the definition of and perception of serving size
within the given study’s context.

In conclusion, our conservative BPRF metrics support recom-
mendations to avoid or limit the consumption of processed meat, SSBs
and TFAs owing to their associations with prevalent chronic diseases.
However, our analyses of the currently available evidence yielded
associations with one- to two-star ratings, owing in large part to sub-
stantial heterogeneity between studies—probably attributable to
differences in study-level characteristics, residual confounding and
measurement error that we were unable to control for. To the extent
these star ratings—particularly the one-star rating for the association
between processed meat and IHD—reflect a lack of consistent data,
they highlight the need for stronger, more diverse evidence beyond
conventional observational epidemiological studies.
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Methods

Overview

This study used the Burden of Proof methodology to examine the
association between processed meat, SSB and TFA consumption
and selected health outcomes. The Burden of Proof methodology
comprises six main steps®: searching for and extracting data from
published studies using a standardized approach, estimating the
relationship between dietary exposure and relative risk of disease
outcome, testing and adjusting for systematic bias arising from dif-
ferencesinknownstudy design characteristics, quantifying remaining
between-study heterogeneity, assessing the evidence for potential
publication or reporting bias and ultimately estimating the BPRF,
which is defined as the 5th percentile relative risk curve—inclusive
of between-study heterogeneity—that is closest to the null for harm-
ful risks. In the Burden of Proof methodology, we estimate both the
mean risk of the outcome occurring at each level of exposure relative
to therisk at the TMREL and the BPRF, which provides a conservative
interpretation of the risk of a given disease outcome occurring that
we summarize by calculating the average BPRF across the 15th to 85th
percentiles of exposure observed in the data. Because they represent
the data-dense part of the exposure range, the 15th to 85th percentiles
are the exposure levels for which the risk curve is most relevant and
avoids emphasis on extreme values for our conservatively estimated
conservative BPRF metrics. In a Burden of Proof capstone paper?®, it
was found that the correlation between risk-outcome score values
derived from alternative ranges of exposure, such asthe 10thand 90th
percentiles and the 5thand 95th percentiles, and risk-outcome scores
derived using the 15th and 85th percentiles across 180 risk-outcome
pairswasvery strong (-0.98). The Burden of Proof approach allows for
astandardized methodology to be applied across multiple risk factors,
which is relevant for policy or research prioritization. This approach
was previously applied to evaluate the association between other
dietary exposures, specifically vegetable and red meat consumption,
and various health outcomes'*,

The Burden of Proof meta-regression methods developed previ-
ously” offer three main advantages over previous risk factor analyses
to support policymakers, public health professionals and individu-
als interested in minimizing health risk by providing more precisely
derived RR estimates, additional information about the shapes of
the risk-outcome relationships and a framework to better capture
the consistency of the underlying evidence and make comparisons
across risk-outcome pairs. First, to improve rigor and accuracy of
RR estimates, Burden of Proof methods systematically adjust for bias
covariates representing known heterogeneity in input study design
characteristics, correct for differences in exposure range across input
studies and use a robust likelihood-based method to detect and trim
data outliers. Second, the meta-regression uses a spline ensemble to
flexibly model nonlinear relationships, allowing the data to deter-
mine the shape of the risk-outcome relationship. This avoids con-
ventional assumptions of log-linearity that may amplify risk at higher
exposure levels and obscure critical details at lower levels in the pres-
ence of a strong threshold effect. Information about the shape of the
relationship can be used to inform cost-benefit analyses and policy
determinations, including those targeting specific levels of exposure
reduction or providing intake guidelines. Third—complementing
RR estimates—Burden of Proof methods further formally quantify
between-study heterogeneity that remains after adjusting for covari-
ates representing known variation across input study characteristics,
andincorporate this quantity directly into uncertainty estimates. These
areused to derive the BPRF. The BPRF for a given risk-outcome pair is
used tocompute the risk-outcome score, whichis defined as the signed
value of the log(BPRF), averaged across the 15th to 85th percentiles of
exposure (that is, the range of most likely exposure levels). The risk—-
outcome score is mapped onto a star-rating system comprising five
levels of risk-outcome relationships, with more stars representing a

stronger association and/or more consistent evidence. By providing a
systematic method to capture the strength or consistency of the input
evidence and generate a conservative measure of association, BPRF
metrics highlight those risk-outcome relationships most likely to be
accurate and reliable and allow for comparisons with other dietary
(ornon-dietary) risks to inform broader public health or research foci
(forinstance, low star ratings combining with high exposure or disease
prevalence suggest a need for more research).

We estimated relative risks and BPRF and risk-outcome scores for
each risk-outcome pair. Due to reporting inconsistencies across the
input data, our pooled relative risk estimates are not location, sex or
age specific. We evaluated the association between processed meat,
SSBand TFA consumption and selected chronic diseases among adults.
We excluded those studies that evaluated the health effects of these
dietary risk factors on adolescents and children.

We followed the PRISMA guidelines through all stages of this
study? (Supplementary Tables 1and 2). This study complies with the
Guidelines on Accurate and Transparent Health Estimates Reporting
(GATHER) recommendations'” (Supplementary Table 3). The study was
approved by the University of Washington Institutional Review Board
(study number 9060). The systematic review approach for processed
meat was registered at PROSPERO (PROSPERO ID CRD42023457810),
and the systematic review approach for SSBs and trans fat was also
registered at PROSPERO (PROSPERO ID CRD42023495735).

Systematicreview

We conducted systematic reviews to identify studies that present rela-
tive measures of association (for example, RRs, odds ratios (ORs) or
hazardratios) betweenthe dietary exposure of interest and the selected
health outcome. Our search strategy had two stages. The first stage was
toidentify the most recent existing meta-analysis or systematic review
for each risk-outcome pair that met the inclusion criteria described
below. Thefirst reviewer screened the citations provided by theidenti-
fied meta-analysis, and the second reviewer checked 100% of the stud-
iesexcluded by thefirst reviewer. In the second stage, separate search
strings were developed to identify sources in PubMed, EMBASE and
Web of Science published after the period covered in the most recent
PRISMA-compliant meta-analysisidentified for each risk-outcome pair
of interest. Inboth stages of the screening, two reviewers are required
to excludeastudy. Whenever there was adiscrepancy, discussion and
consultation were done with a senior personnel. The first reviewer
extracted the data using the data extraction template. The second
reviewer checked the correctness and completeness of the extracted
dataforallthe studies. A detailed description of the search strings and
search strategy is presented in Supplementary Information.

Our systematic review included prospective cohort, nested case—
control and case-cohortstudies that included participants aged 25 or
older on average at the time of entry into the cohort. This restriction
was applied because findings from this study will be used to calculate
estimates of disease burden attributable to these risk factors for future
iterations of GBD, which restricts dietary risk-attributable burden
estimation to adults 25 or older. However, our search did not find any
cohort studies conducted among younger adults (under 25 years).
Prospective cohort studies entirely based on children, adolescents,
pregnant women or adults younger than 25 on average at the time of
entry into the cohort were therefore excluded. The method of assess-
ing dietary intake was required to be either a quantitative 24-hrecall,
weight for record, food diary or FFQ. Cross-sectional studies, inter-
vention studies and cohort studies that did not involve a quantitative
assessment of dietary intake were excluded. The sample included in
the final analysis had to be free of the outcomes of interest (IHD, type
2 diabetes, colorectal cancer) at the time of entry into the cohort.

Otherinclusionary criteria were the use of suitable exposure and
outcome definitions, and the reporting of some measure of uncertainty
(for example, sample size, standard error or Cls) and RR (or related
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measure) for which the exposed and unexposed groups were defined.
Where multiple studies provided RR estimates derived from the same
cohort, we included only the study that captured the largest sample
or the longest follow-up time so as not to include duplicate data. For
each study, one reviewer manually extracted data on study name,
location, design, population (age, sex, race and sample size), dura-
tion of follow-up, exposure definition, exposure assessment method,
exposure categories, outcome definition, outcome ascertainment
method and covariatesincluded inthe statistical analysis of the study.
Asecondreviewer inspected the extracted data and checked with the
firstreviewer whether there was a discrepancy between the extracted
dataand what was reported in the paper. Allincluded studies published
the datarequired by ourinclusionary criteria,and nounpublished data
were obtained for this analysis. For each exposure category, we also col-
lected data on therange of exposure, number of participants, number
of events, and the risk estimate andits corresponding uncertainty. The
template for the data collection form is provided in Supplementary
Table 4. The details of the systematic review for each risk-outcome
pair are described below.

Processed meat. Inthe processed meat systematic review, we defined
processed meat as any meat preserved by smoking, curing, salting or
addition of chemical preservatives. This aligns with GBD 2021°. We
defined our outcome as either incidence of, or mortality from, the
specified health outcome, excluding studies thatincluded other or non-
specific outcome definitions (for example, unspecified cardiovascular
disease). As described above, we used search strings toidentify the most
recent PRISMA-compliant meta-analyses that examined associations
between processed meat consumption and type 2 diabetes, IHD or
colorectal cancer. For studies investigating the relationship between
processed meat consumption and type 2 diabetes, we searched from
1June 2022 (the last date of the identified meta-analysis) through 1
September 2023. For studies examining processed meat consumption
and IHD, we searched from 5June 2021 (the last date of the identified
meta-analysis) through 15 August 2023. For studies examining pro-
cessed meat and colorectal cancer, we searched from1February 2023
(thelast date of theidentified meta-analysis) through1September2023.
We also searched the Global Health Data Exchange (GHDx) databases.
When studiesreported effect sizes for colon cancer and rectum cancer
separately, weincluded both effect sizes. However, if studies reported
colorectal cancer inaddition to effect sizes for colon cancer and rectum
cancer, we chose the effect size reported for colorectal cancer.

We standardized the exposure unit to grams of consumption per
day. For studies reporting the consumption in servings of processed
meat with no other correspondinginformation about the serving size
(13 of 44 studies), we assumed a serving size of 45 g d .

This assumption was based on a previous study'?. For studies that
reported mean consumption rather than ranges of consumption, we
used the midpoint between means as the cutoff for intake intervals. For
undefined lower bounds, we assumed a consumption level of 0 g d.
For undefined upper bounds when the mean and standard deviation
values were not available, we applied the range from the cohort’s most
adjacent quartile or tertile to estimate the upper bound of consumption
specificto each study cohort. For studies that reported the frequency
of consumption per day, week or month without specifying the serv-
ing size, we assumed that the frequency of consumption equated to
the number of servings. When the units were presented as grams per
kilocalorie, we used the mean energy intake to find absolute consump-
tion (notrelative to energy) in grams. If energy intake was not reported,

we assumed 2,000 kcal as an average energy intake for conversion'”.

SSBs. In this systematic review, we defined SSB exposure as consump-
tion of SSBs including carbonated beverages, sodas, energy drinks

and fruit drinks, but excluding 100% fruit and vegetable juices. This
aligns with the GBD 2021 (ref. 5). We examined the association of SSB

consumption with type 2 diabetes and IHD. We used search strings
to identify the most recent PRISMA-compliant meta-analyses that
examined these associations. We also conducted an updated search of
studies examining SSB consumption and type 2 diabetes by searching
inPubMed, EMBASE and Web of Science from the last date of the identi-
fied meta-analysis (1December2022) to 20 December 2023. Similarly,
for the updated search of SSB and IHD, we searched the three data-
bases over the period from the last date of the identified meta-analysis
(1December 2022) to 20 December 2023. A detailed description of
the search strings and search strategy is reported in Supplementary
Information. For studies reporting the consumption in servings of
SSBs without any other corresponding information about the serving
size (8 of 27 studies), we assumed that a serving size is approximately
equivalent to 12 oz (that is, the most commonly used serving size for
SSB)™?%, which is approximately 341 g. For studies that reported mean
consumptionrather thanranges of consumption, we used the midpoint
between means as the cutoff for intake intervals. For undefined lower
bounds, we assumed a consumption level of 0 g d™. For undefined
upper bounds when the meanand standard deviation values were not
available, we applied the range from the cohort’s most adjacent quartile
ortertile to estimate the upper bound of consumption, specificto each
study cohort. For studies that reported the frequency of consump-
tion per day, week or month without specifying the serving size, we
assumed that the frequency of consumption equated to the number
of servings. When the units were presented as grams per kilocalorie,
we used the mean energy intake to find total consumptionin grams. If
energy wasnot reported, we assumed 2,000 kcal as anaverage energy
intake for conversion.

Trans fat. TFA exposure is defined as consumption (percentage daily
energy intake) of trans fats, primarily those that are industrially pro-
duced. The outcome of interest for this systematic review was IHD. The
identified meta-analysis was a previous study”. The additional updated
search covered the period from1December2015to 18 December 2023.
Weincluded only prospective cohort studies and nested case-control
studies that examined the relationship of total TFA and industrially
produced TFA consumption on IHD. For those studies examining total
TFA consumption, we assumed the major contributor to beindustrially
produced TFAs. We excluded studies that examined the effect of TFAs
from ruminant-only sources onIHD because our focus in this systematic
reviewisindustrially produced transfats. In addition, we excluded stud-
ieswhen the outcome was not specifically IHD (that is, cardiovascular
events). When studies reported measures of association for total IHD
events, as well as for nonfatal and fatal IHD events, we used the effect
measures based ontotal IHD events for our main analysis. Intake of TFAs
was expressed as percentage per daily energy intake. For studies that
did not report the percentage energy intake, we converted results into
percentage per daily energy intake using reported intake of TFAs and
energy intake. If energy intake was not reported, we assumed 2,000 kcal
for calculating the percentage per daily energy intake.

Statistical analysis

Thesstatistical analyses conductedin thisstudy are described in detail
below. We used the Burden of Proof analytical framework, which
includes estimation of the shape of the relationships between the risk
and the outcome, testing and adjusting for the bias covariates, quan-
tifying between-study heterogeneities, evaluating publication bias
and estimating the Burden of Proof function. No statistical method
was used to predetermine the sample size. As all data used in this
meta-analysis were from observational studies, no experiments were
conducted, and no randomization or blinding took place.

Estimating the risk-outcome relationship
For each risk-outcome pair, we modeled relative risk of the disease
outcome occurring as a function of exposure to the risk factor using
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Burden of Proof methods, a suite of Bayesian meta-regression tools,
which are detailed elsewhere'”. Burden of Proof methods offer several
valuable features for evaluating relative risk curves and assessing the
robustness of evidence available to support the analyzed risk-outcome
associations. These features include, among others, (1) the ability to
model nonlinear relationships using splines, provided in the analysis
framework with automated knot selection and shape constraints; (2)
systematic incorporation of covariates related to differences among
input study design characteristics, allowing for the mitigation of poten-
tial biases; (3) methods to quantify remaining between-study heteroge-
neity and incorporate itinto uncertainty, creating the basis for asingle
measure that provides a conservative estimate of the magnitude of the
risk-outcome associationand the strength of the supporting evidence;
(4) amechanismto adjust the parameter for between-study variability
to account for the effects of limited data; and (5) a means to evaluate
the presence of publication or reporting bias.

In this study, we first modeled the association of each risk-out-
come pair with no constraints to assess the nature of the association.
Then we applied a constraint based on the shape of the risk curve
derived from this initial model. For the analyses involving processed
meatand SSBs, we applied a quadratic splinemodel with anincreasing
shape constraint (risk increasing with increasing exposure) for each of
the outcomes. For the TFA analysis, we applied a cubic spline model
with anincreasing shape constraint.

Testing and adjusting for biases across input study designs and
characteristics

For eachstudy reporting an effect size for the association between con-
sumption and the selected health outcomes, we extracted information
about aspects of study design that could potentially bias the reported
effect size and coded this information to generate study-level covari-
ates. These study-level covariates included length of follow-up period
(<10 years and >10 years), precision of the exposure and outcome
definitions, study design (that is, RCT or prospective cohort study),
reported measure of association (RRs or ORs), outcome measures
(incidence or mortality), number of exposure measurements (single or
repeat), method by which outcomes were ascertained (administrative
records, self-reports, biomarkers or physician diagnosis) and level of
adjustment for relevant confounders (for example, age, sex, smok-
ing, education, income, calorie intake, BMI, physical activity, alcohol
intake, saturated fatintake and other dietary factors). We adjusted for
these covariates in our meta-regressionif they significantly biased our
estimated RR function. See Supplementary Tables 7-9 for results from
our assessment of study quality for allincluded studies.

Quantifying remaining between-study heterogeneity

After using the aforementioned study-level covariates to account
for known differences in study design characteristics, we used a
linear mixed-effects model to quantify the remaining unexplained
between-study heterogeneity, as captured by gamma (y). The remain-
ing between-study heterogeneity captured by y contributes to the
overall assessment of effect size and evidence strength as reflected in
the BPRF. The details of the methods for quantifying between-study
heterogeneity are described elsewhere®. Uncertainty intervals for
estimated relative risks are reported in two forms: (1) exclusive of
y, derived without fully accounting for between-study heterogene-
ity (thus aligned with conventional uncertainty estimates typically
reportedin traditional meta-analyses), and (2) inclusive of y, which bet-
terreflects the degree of consistency across the underlying evidence.
Inthis study, we present relative risk values with uncertainty intervals
thatinclude y unless otherwise specified.

Evaluating the potential for publication and reporting bias
We examined the presence of publication and reporting bias using
Egger’sregression and by visually inspecting funnel plots. A significant

relationship between effect size and standard error suggests bias or
methodological differences across studies. Positive Egger’s regression
results signal potential publication and reporting bias. Although we
tested for and reported our findings regarding publication and report-
ing bias, we followed standard guidelines and did not adjust our risk
assessmentbased on these results.

Estimating the TMREL

The TMREL refers to the exposure level that,amongall the theoretically
possible values at the population level, minimizes the risk of all associ-
ated outcomes combined. For harmful exposures that can theoretically
be eliminated, the TMREL is usually set at zero. In our analysis, we
applied a TMREL of zero for processed meat, SSBs and TFAs.

Estimating the BPRF

We estimated the BPRF as the function that corresponds to the 5th
percentile (for harmful risk factors) of the RR curve, inclusive of y, that
is closest to the null. The BPRF represents a conservative estimate of
the risk-outcome association thatis consistent with the available data
afterincorporating between-study heterogeneity. The further the BPRF
is fromthe null, the stronger the estimated associationis, both in terms
of effect size and/or strength of supporting evidence. We then estimated
therisk-outcomescore asthe meanvalue of thelog(BPRF) averaged over
the 15th and 85th percentiles of the distribution of exposure observed
intherelevantinputstudies. Therisk-outcomescore provides asingle
summary metric of the BPRF that is comparable across both protective
and harmful effects®. A higher positive risk-outcome score corresponds
to astronger association, supported by more consistent evidence. We
translated the risk-outcome score for each risk-outcome pair into a
star rating ranging from one to five stars to reflect our conservative
estimate of association strength. Increasing stars—in the case of harmful
risk factors—representincreasing evidence of health risk withincreased
levels of exposure totherisk factor (averaged across the evidence-dense
range of exposure levels observed), relative to no exposure. Specifi-
cally, the Burden of Proof framework defines star rating categories as
0% increased risk for one star, 0-15% for two stars, >15-50% for three
stars, >50-85% for four stars and over 85% increased risk for five stars.

Sensitivity analyses

For each risk-outcome pair, we conducted sensitivity analyses that
compared therelativerisk curves generated with and without trimming
the10% least coherent data points (Supplementary Results).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The findings of this study were based on data from public reposito-
ries and published literature, with systematic searches conducted in
PubMed (https://pubmed.ncbi.nlm.nih.gov), Embase (https://www.
embase.com) and Web of Science (https://www.webofscience.com)
using the search strings provided in Supplementary Information. The
estimates produced inthis study are accessible via the Burden of Proof
visualization tool (https://vizhub.healthdata.org/burden-of-proof/).
The relevant studies were identified through a systematic literature
review, and citations for all input studies are listed in the main text
as references” ', Study characteristics for all input data used in the
analyses are also provided in Supplementary Table 5. The template for
the data collection formis provided in Supplementary Table 4.

Code availability

This study was asecondary analysis of existing data obtained through
systematic reviews using meta-analytic methods. The study did
not involve primary data collection, randomization, blinding or
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determination of sample size. Analyses were carried out using R ver-
sion 4.0.5 and Python version 3.10.9. Code used for data processing
(https://github.com/ihmeuw-msca/burden-of-proof/tree/main/risks/
processed_foods) and for running the Burden of Proof models (https://
github.com/ihmeuw-msca/bopforge) is publicly available online.
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Population characteristics This study is a meta-analysis of estimates published in peer-reviewed literature. No primary data collection was carried out

for this analysis, so the study does not involve human research participants. We did not disaggregate findings by race,
ethnicity, or other socially relevant groupings. Included studies were not limited by geography, sex, or other demographic
characteristics.

Recruitment No primary data collection was carried out for this analysis, so we did not recruit participants.

Ethics oversight This study was approved by the University of Washington IRB Committee (study #9060) as a component of the Global
Burden of Disease, Injuries, and Risk Factors (GBD) study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed for this meta-analysis; all available datasets meeting the inclusion criteria are included. As reported
in the main text results sections, the number of individuals included in each risk-outcome pair as follows: Processed meat and Type 2
diabetes: 1,115,885 participants ; Processed meat and Ischemic Heart diseases: 1,173,821 participants ; Processed meat and colorectal
cancer: 2,678,052 participants; Sugar Sweetened Beverages and Type 2 diabetes: 563,444 participants; Sugar Sweetened Beverages and
Ischemic Heart diseases: 961,176 participants; Trans fat and Ischemic Heart diseases: 226,509 participants.

Data exclusions  As described in the systematic review method section of the main paper and Supplementary Information Section 1.2, studies were excluded if
they did not use a prospective cohort study design or case-cohort design, lacked a suitable exposure and outcome definition, failed to provide
measures of uncertainty, or did not report a relative risk, hazard ratio, or odds ratio with clearly defined exposed and unexposed groups.
When multiple studies were reported from the same cohorts, we included only the study that captured the largest sample size or follow-up
time to avoid duplicate data.

Replication This is a meta-analysis of existing observational studies. Therefore, traditional replication is not directly applicable. However, we have
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Replication provided all data sources, selection criteria, and open-source code for statistical analysis, allowing other researchers to reproduce our findings
using the same methodology.

Randomization  Thisis a meta-analysis of existing observational studies. Thus, there were no experimental groups and no need for randomization.

Blinding This study is a meta-analysis of existing longitudinal cohort studies; therefore, no blinding procedures were involved.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| |:| ChlIP-seq
Eukaryotic cell lines |:| |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Plants

Seed stocks We did not use any plant data.

Novel plant genotypes  We did not use any plant data.

Authentication We did not use any plant data.

ChlIP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and

whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.




Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.
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Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain [ | ROI-based || Both
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Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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